Sole sufficient operator

From semanticweb.org.edu
Jump to: navigation, search

This page belongs to resource collections on Logic and Inquiry.

A sole sufficient operator or a sole sufficient connective is an operator that is sufficient by itself to generate all of the operators in a specified class of operators. In logic, it is a logical operator that suffices to generate all of the boolean-valued functions, <math>f : X \to \mathbb{B} </math>, where <math>X\!</math> is an arbitrary set and where <math>\mathbb{B}</math> is a generic 2-element set, typically <math>\mathbb{B} = \{ 0, 1 \} = \{ false, true \}</math>, in particular, to generate all of the finitary boolean functions, <math> f : \mathbb{B}^k \to \mathbb{B} </math>.

Syllabus[edit]

Focal nodes[edit]

Peer nodes[edit]

Logical operators[edit]

Related top.css[edit]

Relational concepts[edit]

Information, Inquiry[edit]

Related articles[edit]

Document history[edit]

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.